Further characterization of o-nitrobenzaldehyde degrading bacterium Pseudomonas sp. ONBA-17 and deduction on its metabolic pathway
نویسندگان
چکیده
A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation.
منابع مشابه
Isolation and preliminary characterization of a o-nitrobenzaldehyde-degrading Alcaligenes sp. ND1
This paper reports the isolation and characterization of a new o-nitrobenzaldehyde (ONBA)-degrading bacterium, Alcaligenes sp. ND1. ND1 degraded almost all ONBA (100 mg L(-1)) in M9 medium within 36 hours. The key enzyme(s) involved in the initial biodegradation was a constitutively intracellular enzyme(s). This bacterium has great potential utility for bioremediation.
متن کاملBioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1
Biodegradation of phenol is a major focus of toxic organic compound degradation by microorganisms isolated from polluted areas. An increasing number of bacteria and fungi possessing unique biodegradation capabilities have been isolated in recent years. In this study a new isolate, Rhodococcus erythropolis SKO-1, from polluted soils in the Tehran oil refinery region, is reported. Identificati...
متن کاملIsolation and Partial Characterization of a Bacterial Thermostable Polymethyl Galacturonase from a Newly Isolated Bacillus sp. strain BR1390
Background: Pectinases are pectin degrading class of enzymes including polygalacturonase (PG), polymethyl galacturonase (PMG), pectate lyase (PEL), and pectin esterase (PE) that are commonly used in processes involving the degradation of plant materials, such as speeding up the extraction of fruit juices. Objectives: A highly methylated pectin degrading bacterium from soil covered with fruit wa...
متن کاملBiodegradation of Phenol by Newly Isolated Phenol-degrading Bacterium Ralstonia sp. Strain PH-S1
A newly phenol-degrading bacterium, identified as Ralstonia sp. strain PH-S1, was isolated from oil-contaminated soil in Khark Island. It was isolated by a multistep enrichment and screening technique on mineral medium (MM) containing 100 mg.l-1 of phenol as the sole source of carbon. The bacterium was able to degrade up to 1100 mg.l-1 of phenol but the cell growth decreased with higher concent...
متن کاملIsolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway.
A thermophilic naphthalene- and aliphatic hydrocarbon-degrading bacterium SH-1 was isolated from a deep oil well and identified as Geobacillus sp. n-alkanes from C12 to C33 in crude oil and naphthalene were effectively degraded by strain SH-1, and this strain could readily utilize these compounds as its sole carbon and energy resources. During the degradation of naphthalene, strain SH-1 initiat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2014